Personalized Medication Adherence Management in Asthma and Chronic Obstructive Pulmonary Disease: A Review of Effective Interventions and Development of a Practical Adherence Toolkit

Susanne J. van de Hei, MD\(^{a,b,c}\), Boudewijn J.H. Dierick, MD\(^{b,c,e}\), Joyce E.P. Aarts, BSc\(^d\), Janwillem W.H. Kocks, MD, PhD\(^{b,c,e}\), and Job F.M. van Boven, PharmD, PhD\(^{b,d,g,h}\) Groningen, The Netherlands; Singapore; and Melbourne, Victoria, Australia

What is already known about this topic? Nonadherence management in asthma and chronic obstructive pulmonary disease remains challenging despite many existing interventions. The Test of Adherence to Inhalers (TAI) can identify reasons for nonadherence, but it does not provide health care professionals with practical advice regarding how to act.

What does this article add to our knowledge? This research reports on effective adherence-enhancing interventions and the development of the TAI Toolkit to select evidence-based interventions. The Toolkit was rated as useful by a multidisciplinary panel.

How does this study impact current management guidelines? This study provides an overview of effective interventions on medication adherence in asthma and chronic obstructive pulmonary disease. Furthermore, the created TAI toolkit provides practical guidance for health care professionals for how to act effectively upon identified barriers for nonadherence.

BACKGROUND: The management of medication nonadherence of patients with asthma or chronic obstructive pulmonary disease (COPD) remains challenging. Given the multitude of underlying causes, a personalized approach is required. The Test of Adherence to Inhalers (TAI) can identify reasons for nonadherence, but it does not provide guidance regarding how to act effectively after results.

OBJECTIVE: To develop a practical, evidence-based decision support toolkit for health care professionals managing adult patients with asthma and/or COPD, by matching TAI-identified adherence barriers to proven effective adherence-enhancing interventions.

METHODS: We performed a literature review in PubMed and Embase identifying interventions that enhanced medication adherence in adult patients with asthma and/or COPD. Randomized controlled trials published in English with full texts available were included. Effective interventions assessed by the Cochrane risk of bias tool were categorized, matched with specific TAI responses, and developed into a practical TAI Toolkit. The Toolkit was assessed for content and usability.

CONCLUSION: The development of the TAI Toolkit was supported by an unrestricted grant from AstraZeneca; grants, personal fees, and nonfinancial support from Boehringer Ingelheim; grants and personal fees from Chiesi Pharmaceuticals; grants, personal fees, and nonfinancial support from GSK; grants and personal fees from Novartis; grants from Mundipharma; and grants from Teva, outside the submitted work, all paid to his institution. J. Kocks holds 72.5% of shares in the General Practitioners Research Institute. The rest of the authors declare that they have no relevant conflicts of interest.

Received for publication December 31, 2020; revised April 14, 2021; accepted for publication May 18, 2021.

Available online June 7, 2021.

Corresponding author: Job F.M. van Boven, PharmD, PhD, Department of Clinical Pharmacy and Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands. E-mail: j.f.m.van.boven@rug.nl. 2213-2198

© 2021 The Authors. Published by Elsevier Inc. on behalf of the American Academy of Allergy, Asthma & Immunology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jaip.2021.05.025
INTRODUCTION

With adherence ranging from 22% to 78%, asthma and chronic obstructive pulmonary disease (COPD) medication adherence is the lowest for all medication groups.1,2 Besides being related to poor symptom control and an increased number of exacerbations, poor adherence is associated with increased mortality, decreased quality of life, and increased direct and indirect costs.1,3,4 Medication adherence is defined by the World Health Organization (WHO) as “the degree to which use of medication by the patient corresponds with the prescribed regimen.” The WHO distinguishes three types of nonadherence: erratic, intelligent, and unwitting. Erratic (also called sporadic) nonadherence reflects forgetfulness, intelligent (or deliberate) nonadherence reflects a reasoned choice for not taking the medicine (eg, owing to fear of side effects), and unwitting (or unconscious) nonadherence reflects the failure to understand fully either the specifics of the regimen or the necessity for adherence.5,6 There is no typical nonadherent patient, because nonadherence is a complex and multifactorial problem.7 Bourbeau and Bartlett8 highlighted that medication, dosing regimen, patient factors, health care provider, and caregivers could all have a role. Most of these factors are modifiable and therefore can make the difference between adherence and nonadherence. Because there is so much diversity, there is no simple one-size-fits-all approach.

To manage nonadherence, the first step is to recognize and classify it. Yet for many years, no respiratory specific tool could easily identify the three WHO-defined phenotypes. In 2016, the Test of Adherence to Inhalers (TAI),1,2 a questionnaire consisting of 10 patient-reported items and two health care professional reported items, was launched and validated. The TAI is increasingly translated in other languages and seems to be the first tool that can truly guide personalized adherence interventions. However, once completed, there is no guidance regarding how to act on each answer provided by the patient. To support health care professionals, there is the need for a toolkit that can efficiently match TAI-identified adherence barriers with effective interventions.

The objectives of this study were to identify effective medication adherence-enhancing interventions for adult patients with asthma or COPD and to use this information to develop a practical, evidence-based decision support toolkit for health care professionals to manage nonadherence.

METHODS

Study design

We searched the PubMed and Embase databases for articles published between 2003 and May 2020. We chose 2003 because the landmark WHO report about medication adherence,9 which can be seen as the starting signal for the appearance of articles on the topic of adherence, was published that year. The current study is reported according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses reporting guidelines.10

Eligibility criteria

For inclusion, studies needed to meet the following criteria: (1) full text (ie, no abstracts), (2) English language, (3) randomized controlled trial (RCT), (4) adults with asthma and/or COPD, (5) medication adherence as the outcome (primary or secondary), (6) showing improvement in medication adherence, and (7) intervention led by health care professionals. No limits were set for sex or study setting (eg, clinical or community setting).

Search strategy

The search was performed with the use of key words and Medical Subject Headings of the National Library of Medicine. Search terms included “asthma,” “chronic obstructive pulmonary disease/lung disease/COPD,” “pulmonary/lung emphysema,” “chronic bronchitis,” “intervention,” “strategy,” “medication,” “drug,” “medicine,” “medication adherence,” “(non[-])adherence,” “(non[-])compliance,” “(non[-])concordance,” and “(non[-])persistance.” (The full search strategy is presented in Table E1 in this article’s Online Repository at www.jaci-inpractice.org). The reference lists of all included articles, a previously published Cochrane review,11 and the WHO report were manually searched to identify any additional relevant articles.8

Study selection

Articles identified by the search strategy were imported into Endnote X7 (Clarivate Analytic, Philadelphia, Pa). After duplicates were removed, all retrieved articles were assessed for relevance by J.E.P. Aarts using the Rayyan platform of the Qatar Computing Research Institute (QCRI, Qatar).12 After screening on title and abstract, assessing full-text articles for eligibility, and adding articles identified from reference lists, two additional researchers (J.F.M. van Boven and S.I. van de Hei) checked the included articles for eligibility.
Data extraction and quality assessment

The following data were extracted for each study: (1) first author, country, and year of publication; (2) sample size; (3) duration of the intervention and follow-up; (4) age of the study population; (5) setting; (6) intervention; (7) control; (8) method for measuring adherence; and (9) outcomes. The Cochrane Risk of Bias Tool was used for quality assessment of the included studies. The tool consists of six domains (selection bias, performance bias, detection bias, attrition bias, reporting bias, and other bias). For all included articles, the risk of bias was judged as low, unclear, or high risk (see Figure E1 and Table E2 in this article’s Online Repository at www.jaci-inpractice.org). Finally, we assessed the overall level of evidence (high, medium, or low) based on the power of the study (powered on adherence or not) as well as the effect on adherence (between or within groups). Study data were first extracted and assessed by one researcher (J.E.P. Aarts) to maintain consistency throughout coding. Subsequently, data in included studies were validated by an independent second reviewer (S.J. van de Hei).

Development of adherence toolkit

All data were summarized and used to design a practical toolkit to support health care professionals selecting an effective adherence-enhancing intervention matching specific responses to the TAI (see Table E3 in this article’s Online Repository at www.jaci-inpractice.org).

RESULTS

Study selection

The initial search yielded 369 studies, 105 of which were discarded as duplicates. After titles and abstracts were screened, 131 articles remained for full text review. Of these, 103 articles were excluded. Finally, 28 studies were included, with 12 additional studies identified through manual searching of reference lists, WHO reports, and Cochrane review (total n = 40). Two studies were identified as eligible from the reference lists, but were not included.16,17 One study evaluated the same intervention in two separate studies; of those, we included one (the largest study with a longer follow-up).16 Another study evaluated the same intervention: one study had a control group (which we included), and in the second study, the intensity of interventions was different between groups.17 Figure 1 provides a Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow diagram for study selection. RCT, randomized controlled trial.

Overview of included studies

The 40 included articles (Tables I and II) all reported on intervention(s) that showed improvement in medication adherence in patients with asthma (n = 32) and/or COPD (n = 8). The sample size varied between 20 and 14,064 participants.18,19 Medication adherence was the primary outcome in 16 studies18,20-22,24,30,31,40,43,44,47-49,51,55 and the secondary
<table>
<thead>
<tr>
<th>Study (first author, country, year)</th>
<th>n (randomized)</th>
<th>Duration of study</th>
<th>Study population</th>
<th>Setting</th>
<th>Intervention</th>
<th>Control</th>
<th>Adherence measure</th>
<th>Outcomes (1: primary outcome; 2: secondary outcomes)</th>
<th>Level of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reminders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charles, New Zealand, 2007</td>
<td>18</td>
<td>24 wk</td>
<td>Adolescents and adults, aged 12-65 y</td>
<td>Research clinical trials facility (recruited via research volunteer database, newspapers, and informal contacts)</td>
<td>Medication twice daily via a metered dose inhaler with covert adherence monitoring and audiovisual reminder function</td>
<td>No audiovisual reminder function</td>
<td>Electronic tracking device</td>
<td>1: Median adherence 93% vs 74% (difference 18%; P < 0.0001) 2: Proportions adherent with >50%, 80%, or 90% of medication −1.33 (1.10-1.61) −2.27 (1.56-3.30) −3.25 (1.74-6.10)</td>
<td>High</td>
</tr>
<tr>
<td>Foster, Australia, 2014</td>
<td>40 GPs, 143 patients</td>
<td>6 mo</td>
<td>Adolescents and adults, aged 14-65 y</td>
<td>General practice</td>
<td>Interventions (three times): 1. PAD led by a GP 2. IRF led by a GP 3. Both IRF and PAD</td>
<td>Usual care</td>
<td>Electronic tracking device plus self-reported Medication Adherence Report Scale</td>
<td>1: ACT: n.s. 2: Mean adherence: 46% (UC), 46% (PAD), 76% (IRF+PAD) (P = 0.003). After 6 mo: 60% ± 38% (IRF and IRF+PAD) vs 29% ± 33% (UC and PAD). n severe exacerbations: n.s.</td>
<td>Medium</td>
</tr>
<tr>
<td>Strandbygaard, Denmark, 2010</td>
<td>30</td>
<td>12 wk (start intervention at wk 4)</td>
<td>Adults, aged 18-45 y</td>
<td>Other (recruited by newspaper advertising)</td>
<td>Daily SMS reminder to take medication</td>
<td>No SMS reminder</td>
<td>Calculated from dose count on inhaler device and pharmacy data</td>
<td>1: Absolute difference in mean adherence rate 17.8% (3.2-32.3) (P = 0.019). Adherence rate at baseline: intervention 77.9% vs control 84.2%; at 12-wk follow-up intervention 81.5% vs control 70.1%; 2: ACQ, mini-AQLQ, lung function: n.s.</td>
<td>Medium</td>
</tr>
<tr>
<td>Educational interventions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bender, United States, 2010</td>
<td>50</td>
<td>10 wk</td>
<td>Adults aged 18-65 y</td>
<td>Tertiary care center/hospital</td>
<td>IVR telephone calls intervention</td>
<td>Usual care</td>
<td>Electronic tracking device or canister weight (when electronic tracking is unavailable)</td>
<td>1: Mean adherence: 64.5% IVR vs 49.1% control (P < 0.003) 2: AQLQ n.s., ACT n.s.</td>
<td>High</td>
</tr>
<tr>
<td>Chakié, Brazil, 2006</td>
<td>271</td>
<td>3 mo</td>
<td>Adolescents and adults aged ≥12 y</td>
<td>Recruited by their own physician in their own clinical setting</td>
<td>Biweekly educational telephone calls led by specially trained nursing student</td>
<td>Usual care</td>
<td>Calculated from dose count on inhaler device</td>
<td>1: Proportion adherent patients taking ≥85% of prescribed doses: intervention 74.3% vs control 51.9%; difference 43% (P < .001)</td>
<td>High</td>
</tr>
<tr>
<td>Côté, Canada, 1997</td>
<td>188</td>
<td>12 mo</td>
<td>Adults aged ≥16 y</td>
<td>Tertiary care hospitals</td>
<td>Interventions: 1. Education with action plan based on peak-flow monitoring 2. Education with action plan based on monitoring of asthma symptoms</td>
<td>No formal education</td>
<td>Canister weight 3: Asthma morbidity: n.s. 4: Short-term adherence (1 mo): taking ≥60% of prescribed doses more in intervention than control (P = 0.03). Long-term adherence (3, 6, 9, and 12 mo): n.s.</td>
<td>1: Adherence score increased in both groups (P < 0.05). Difference in adherence score between intervention and control: n.s.</td>
<td>Low</td>
</tr>
<tr>
<td>Ebrahimabadi, Iran, 2019</td>
<td>85</td>
<td>1 mo</td>
<td>Adults aged 20-65 y</td>
<td>Hospital</td>
<td>Infographic: Education Video education</td>
<td>Self-reported MMAS-8</td>
<td>1: Adherence score increased in both groups (P < 0.05). Difference in adherence score between intervention and control: n.s.</td>
<td>1: Adherence score increased in both groups (P < 0.05). Difference in adherence score between intervention and control: n.s.</td>
<td>Low</td>
</tr>
<tr>
<td>Country, Year</td>
<td>Study Period</td>
<td>Participants</td>
<td>Setting</td>
<td>Intervention</td>
<td>Usual Care</td>
<td>Measure</td>
<td>Effect Size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>--------------</td>
<td>---------</td>
<td>-------------</td>
<td>------------</td>
<td>---------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gallefoss, Norway, 1999</td>
<td>1 y</td>
<td>140 (78 asthma, 62 COPD) patients aged 18-70 y</td>
<td>Outpatient clinic at hospital</td>
<td>Educational intervention led by nurse and physiotherapist</td>
<td>Usual care by GP</td>
<td>Pharmacy data</td>
<td>Proportion adherent asthma patients: intervention 57% vs control 32% ($P = .04$). Median adherence: intervention 82% vs control 55% (n.s.). COPD: n.s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goeman, Australia, 2013</td>
<td>12 mo</td>
<td>124</td>
<td>Adults aged ≥55 y</td>
<td>Face-to-face, person-centered education led by research or brochure-only information</td>
<td>Electronic tracking device</td>
<td>1: Difference between groups in ACQ 0.3 ($P = .01$) 2: Change in adherence from baseline in intervention group: 19.3% (95% confidence interval, 6.9-31.6) Difference in adherence between groups n.s. AQOL: n.s.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poureslami, Canada, 2012</td>
<td>9 mo</td>
<td>92</td>
<td>Adults aged ≥21 y</td>
<td>Pulmonary medicine clinic Interventions: 1. Community educational video 2. Knowledge educational video 3. Both (community educational video and knowledge educational video)</td>
<td>Pictorial pamphlet</td>
<td>Self-reported adherence through questionnaire</td>
<td>Adherence (“understanding physicians instructions on medication use”) improved in all groups ($P < .01$), most in group 1 compared with other group ($P < .05$). Inhaler technique</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Put, Belgium, 2003</td>
<td>6 mo (last 3 mo follow-up)</td>
<td>23</td>
<td>Adults aged ≥18 and ≤65 y</td>
<td>Outpatient clinic at hospital Individualized asthma program (psycho-education, behavioral and cognitive techniques)</td>
<td>Waiting list</td>
<td>Adherence scale</td>
<td>Symptoms (ASC) ↓ McMaster AQLQ ↓ Adherence scale scores decreased significantly in intervention vs control ($P = .002$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vollmer, United States, 2011</td>
<td>18 mo</td>
<td>14.064</td>
<td>Adults aged ≥18 y</td>
<td>Home (contact by phone calls) IVR; three types: refill reminder call, tardy refill call, and initiator/restart call</td>
<td>usual care</td>
<td>Modified medication possession rate (based on pharmacy data)</td>
<td>1: Change in adherence 0.02 (95% confidence interval, 0.01-0.03; $P = .002$). Proportion of good adherers: n.s. 2: Asthma control n.s., mini-AQLQ n.s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Windsor, United States, 1990</td>
<td>12 mo</td>
<td>267</td>
<td>Adults aged ≥17 y</td>
<td>Pulmonary medicine clinic</td>
<td>Usual care</td>
<td>IAS plus MAS</td>
<td>1: Medication adherence from baseline to 6 mo: intervention 44% to 92% vs control 59% to 62% (95% confidence interval, 0.31-0.57) 2: Inhaler skills use ↑; inhaler adherence from baseline to 6 mo: intervention 20 to 58% vs control 28% to 29% (95% confidence interval, 0.24-0.50)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Study (first author, country, year)</th>
<th>n (randomized)</th>
<th>Duration of study</th>
<th>Study population</th>
<th>Setting</th>
<th>Intervention</th>
<th>Control</th>
<th>Adherence measure</th>
<th>Outcomes (1: primary outcome; 2: secondary outcomes)</th>
<th>Level of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple component interventions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armour, Australia, 2007*</td>
<td>57 pharmacies/396 patients</td>
<td>6 mo</td>
<td>Adults aged 18-75 y</td>
<td>Pharmacies</td>
<td>Pharmacist asthma care program led by pharmacist</td>
<td>Usual care</td>
<td>Self-reported Brief Medication Questionnaire</td>
<td>1: Asthma control (change from severe to not severe): ↑ 2: Proportion adherent to preventer medication: odds ratio = 1.89 (95% confidence interval, 1.08-3.30). Improvement in risk of nonadherence (P = .04). Decrease in reliever medication use (P = .03). AQOL ↑, inhaler technique ↑</td>
<td>Medium</td>
</tr>
<tr>
<td>Garcia-Cárdenas, Spain, 2013*</td>
<td>65 pharmacies/373 patients</td>
<td>6 mo</td>
<td>Adults aged ≥18 y</td>
<td>Community pharmacies</td>
<td>Protocol-based pharmacist intervention led by pharmacist</td>
<td>Usual care</td>
<td>Self-reported four-item MMAS</td>
<td>1: Proportion controlled asthma patients: ↑ 2: Proportion adherent patients at baseline: intervention 38.2% vs control 39.3%; at 6 mo: intervention 78.5% vs control 52.0% (P < .001) Correct inhaler technique ↑</td>
<td>Medium</td>
</tr>
<tr>
<td>Manfrin, Italy, 2017*</td>
<td>283 pharmacies/1263 patients</td>
<td>9 mo</td>
<td>Adults aged ≥18 y</td>
<td>Community pharmacies</td>
<td>Medicines use review led by pharmacist. Interventions: 1. Intervention at baseline 2. Intervention at 3 mo</td>
<td>-</td>
<td>Self-reported using two questions from MMAS-8</td>
<td>1: ACT ↑ 2: Adherence improved by 35.4% 3 mo after intervention and 40.0% at 6 mo (P < .01)</td>
<td>Low</td>
</tr>
<tr>
<td>Mehuy, Belgium, 2008*</td>
<td>66 pharmacies/201 patients</td>
<td>6 mo</td>
<td>Adults aged 18-50 y</td>
<td>Community pharmacies</td>
<td>Protocol-defined pharmacist intervention led by pharmacist</td>
<td>Usual pharmacist care</td>
<td>Pharmacy data plus self-reported</td>
<td>1: ACT: n.s. (improvement in subgroup with insufficiently controlled asthma) 2: Adherence by prescription refill rates: intervention 90.3% vs control 74.6% (P = .016). Self-reported adherence n.s., AQOL n.s., inhalation technique ↑</td>
<td>Medium</td>
</tr>
<tr>
<td>Wong, Malaysia, 2017*</td>
<td>171</td>
<td>6 mo</td>
<td>Adults aged ≥21 y</td>
<td>Government health hospitals and clinics</td>
<td>Pharmacy management service led by pharmacist</td>
<td>Usual pharmacy service</td>
<td>MAS</td>
<td>1: Proportion patients with well-controlled asthma ↑ 2: Proportion patients adherent at baseline: intervention 76.3% vs control 67.5%; at mo 6: intervention 92.5% vs control 45.5% (P < .001). Correct inhaler technique ↑</td>
<td>Medium</td>
</tr>
<tr>
<td>Bailey, United States, 1990*</td>
<td>267</td>
<td>1 y</td>
<td>Adults aged ≥18 y</td>
<td>Pulmonary medicine clinic/hospital</td>
<td>Self-management program led by health educator</td>
<td>Usual care; only educational pamphlet</td>
<td>IAS plus MAS plus rating by project staff</td>
<td>1: Health use (emergency department visit or hospitalization): n.s. 2: Change in adherence between groups according to IAS (P = .0001) and MAS (P = .0001). Proportion adherent (IAS adherent on all six items, MAS adherent on all 6 items) at baseline: intervention 20.4%, 43.6% vs control 28.0%, 59.3%; at 12 mo: intervention 58.3%, 91.9% vs control 29.0%, 61.7%</td>
<td>Medium</td>
</tr>
</tbody>
</table>
Berg, United States, 1997
- **55**
- 8 wk (1 wk run-in, 6 wk intervention, 1 wk run-out)
- Adults aged ≥18 y
- Community
- Self-management program led by registered nurses
- Usual care
- Self-reported plus electronic tracking device
- Change in adherence between groups according to electronic monitoring ($P < .05$). Self-reported adherence n.s. Total daily symptoms n.s.

Farag, Egypt, 2018
- **39**
- 20 pulmonologists/400 patients
- Adults aged >18 y
- Hospital
- Asthma action plan with peak flow meter and usual care led by pulmonologist
- Usual care
- Self-reported MMAS
- 1: Asthma attacks: mild n.s, severe higher in control group ($P < .05$) 2: Proportion of patients with high and medium adherence was higher in intervention than control ($P < .05$), low adherence was higher in control ($P < .05$)

Janson, United States, 2009
- **84**
- 24 wk (4 wk run-in, 4 wk intervention, 14 wk observation)
- Adults aged 18-55 y
- Private and public community clinics
- Individualized self-management educational intervention led by trained advanced practice nurse and respiratory therapist
- Usual care with self-monitoring alone
- Electronic tracking device
- 1: Mean and median adherence: n.s. 2: Maintaining >60% adherence odds ratio $= 9.2$ intervention vs 0.4 control ($P = .02$). Perceived control of asthma]], quality of life n.s.

Olivera, Brazil, 2016
- **119**
- 4 mo
- Adults aged 18-73 y
- Outpatient clinic at hospital
- Self-management model/meetings led by pharmacist
- Usual care
- Self-reported MGLS plus pharmacy data
- 1: Knowledge † 2: Dispensed medication increased in intervention group over time ($P = .0113$), no comparison between groups. Proportion adherent patients increased within both groups ($P = .0244$), between-group difference unclear. Inhaler technique †, quality of life †

Young, United States, 2012
- **98**
- 6 mo (intervention in first 3 mo)
- Adults aged ≥19 y
- Health center
- Telephone consultations by pharmacist
- Usual care (mail receipt of prescription refill)
- Eight-item MMAS
- Pilot study
- Asthma control n.s. Proportion patients with low adherence: n.s. ($P = .07$). Within group-analyses: Asthma control intervention group 1. Proportion patients with low asthma adherence intervention group (26% follow-up vs 58% baseline; $P < .01$)

Petrie, New Zealand, 2012
- **147**
- 9 mo (intervention in first 18 wk)
- Adolescents and adults, aged 16-45 y
- Home (contact by phone calls)
- Text message program, individually tailored text messages based on illness and medication beliefs
- No text messages
- Self-reported
- Group effect ($P = .003$) and group by High time effect ($P < .05$). Average adherence 43.2% control vs 57.8% intervention ($P = .003$). Proportions participants with average adherence of ≥80% 10.6% control vs 25.9% intervention ($P = .034$)

Motivational strategies

- Gamble, Ireland, 2011
- **20**
- 12 mo (intervention in first 12 wk)
- Adults aged ≥18 y
- Specialist difficult asthma service
- Individualized psycho-educational intervention led by experienced respiratory nurse
- Usual care
- Refill records (GP prescription records)
- 1: % inhaled combination therapy inhalers filled: intervention 37.6% to 61.9% vs control 31.7% to 28.8% ($P < .01$). 2: Asthma control score n.s. AQLQ n.s.

(continued)
<table>
<thead>
<tr>
<th>Study (first author, country, year)</th>
<th>n (randomized)</th>
<th>Duration of study</th>
<th>Study population</th>
<th>Setting</th>
<th>Intervention</th>
<th>Control</th>
<th>Adherence measure</th>
<th>Outcomes (1: primary outcome; 2: secondary outcomes)</th>
<th>Level of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schmaling, United States, 2001</td>
<td>45</td>
<td>2 wk</td>
<td>Adults aged 18-60 y</td>
<td>Chest clinics at hospital</td>
<td>Education intervention and motivational interviewing</td>
<td>Educational intervention</td>
<td>Decisional Balance Questionnaire</td>
<td>Level of readiness to adhere to medication as prescribed higher intervention compared with control (P < .05). Inhaler technique n.s. between groups</td>
<td>Low</td>
</tr>
<tr>
<td>Wilson, United States, 2010</td>
<td>612</td>
<td>12 mo</td>
<td>Adults aged 18-70 y</td>
<td>Center for health research</td>
<td>Intervention (two times):</td>
<td>Usual care</td>
<td>Pharmacy data</td>
<td>SDM vs UC, 1-y follow-up: Controller adherence 0.67 vs 0.46 (P < .0001) LABA adherence 0.51 vs 0.40 (P = .0225) Canister equivalent 10.9 vs 5.2 (P < .0001) Mini-AQLQ †, asthma control † SDM vs CDM, 1-y follow-up: Controller adherence 0.67 vs 0.59 (P = .029) LABA adherence 0.51 vs 0.41 (P = .0143) Canister equivalent 10.9 vs 9.1 (P = .005) Mini-AQLQ n.s., asthma control n.s.</td>
<td>Medium</td>
</tr>
<tr>
<td>Price, United Kingdom, 2010</td>
<td>1233</td>
<td>12 wk</td>
<td>Adolescents and adults aged ≥12 y</td>
<td>Clinic center</td>
<td>Interventions: 1. Medication once daily in evening 2. Medication twice daily</td>
<td>—</td>
<td>Electronic tracking device plus self-reported</td>
<td>1: Mean adherence group 1 93.3% vs group 2 89.5% (P < .001). Self-reported mean adherence group 1 97.2% vs group 2 95.3% (P < .001). 2: Health-related quality of life, n.s.</td>
<td>High</td>
</tr>
<tr>
<td>Onyirimba, United States, 2003</td>
<td>30</td>
<td>10 wk (intervention in first 3 wk)</td>
<td>No age in/exclusion criteria</td>
<td>Hospital and medical center</td>
<td>Direct clinician-to-patient feedback discussion on medication use from clinician</td>
<td>Standard asthma care</td>
<td>Electronic tracking device</td>
<td>1: Adherence rates at baseline: intervention 61% vs control 51%. Significant difference in adherence between groups starting at wk 2 until end (10 wk) (P < .0001); 2: AQLQ n.s.</td>
<td>Medium</td>
</tr>
<tr>
<td>Sulaiman, Ireland, 2018</td>
<td>218</td>
<td>3 mo</td>
<td>Adults aged ≥18 y</td>
<td>Specialist asthma clinics</td>
<td>Intensive education plus (bio)feedback-guided training led by nurse</td>
<td>Intensive education</td>
<td>Electronic tracking device</td>
<td>1: Adherence rate at baseline: intervention 65% vs control 67%; in third mo: intervention 73% vs 63% in control (P < .01). Significant change in adherence from mo 1 to mo 3 (P = .02)</td>
<td>High</td>
</tr>
</tbody>
</table>

†/‡, significant improved/deteriorated; ACQ, Asthma Control Questionnaire; ACT, Asthma Control Test; AQLQ, Asthma Quality of Life Questionnaire; AQOL, Asthma Quality of Life; ASC, Asthma Symptom Checklist; COPD, Chronic Obstructive Pulmonary Disease; GP, general practitioner; IAS, Inhaler Adherence Scale; IRF, inhaler reminders and feedback; IVR, automatic interactive voice response; LABA, long-acting β-agonist; MAS, Medication Adherence Scale; MGLS, Morisky Green Levine Medication Adherence Scale; MMAS, Morisky Medication Adherence Scale; n.s., not significant; PAD, personalized adherence discussion; SMS, short message service.

*All primary outcomes are described. Secondary outcomes described are quality of life, disease control, exacerbations, and inhaler technique.

†No sample size calculation was available, or the primary and secondary outcomes were not described.
<table>
<thead>
<tr>
<th>Study (first author, country, year)</th>
<th>n (randomized)</th>
<th>Duration of study</th>
<th>Study population</th>
<th>Setting</th>
<th>Intervention</th>
<th>Control</th>
<th>Adherence measure</th>
<th>Outcomes (1: primary outcome; 2: secondary outcomes)</th>
<th>Level of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gregoriano, Switzerland, 2019</td>
<td>169</td>
<td>6 mo</td>
<td>Asthma and COPD. No age inclusion or exclusion-criteria</td>
<td>Home</td>
<td>Audio reminder or daily alarm clock and support phone calls led by pharmacist or nurse</td>
<td>Usual care</td>
<td>Electronic tracking device</td>
<td>1: Time to first exacerbation: n.s. 2: Frequency of exacerbation: n.s. Days with 80% to 100% taking adherence: ~Puff inhalers: intervention 81.6% vs control 60.1% (P < .001) ~Dry powder: intervention 89.6% vs control 80.2% (P = .01) Timing adherence (% days with correct dosing interval) in participants using puff inhalers: intervention 68.9% vs control 50.6% (P < .001) and in participants using dry powder capsules: intervention 79.6% vs control 71.7% (P = .052).</td>
<td>Medium</td>
</tr>
<tr>
<td>Abdulsalim, India, 2018</td>
<td>260</td>
<td>24 mo</td>
<td>Adults</td>
<td>Hospital</td>
<td>Pharmacist-led educational intervention program led by clinical pharmacist</td>
<td>Usual care</td>
<td>Self-reported MAQ</td>
<td>1: Proportions of patients with high, moderate, and low adherence at 6, 12, 18, and 24 mo between groups (P < .001). Proportion high adherent (MAQ score 3-4) at baseline: intervention 48.5% vs control 47.7%; at 24 mo: intervention 80.8% vs control 49.0%</td>
<td>High</td>
</tr>
<tr>
<td>Jarab, Jordan, 2012</td>
<td>133</td>
<td>6 mo</td>
<td>Adults aged >35 y</td>
<td>Outpatient clinic at hospital</td>
<td>Pharmaceutical care program led by clinical pharmacist</td>
<td>Usual care</td>
<td>Self-reported MMAS</td>
<td>1: Health-related quality of life: n.s. 2: Proportion nonadherent patients at baseline: intervention 63.6% vs control 59.7%; at 6 mo: intervention 28.6% vs control 48.8% (P < .05). Hospital admission for exacerbation</td>
<td>Medium</td>
</tr>
<tr>
<td>Tommelein, Belgium, 2014</td>
<td>170 pharmacies/734 patients</td>
<td>3 mo</td>
<td>Adults aged ≥50 y</td>
<td>Community pharmacies</td>
<td>Protocol-defined pharmaceutical care program led by pharmacist</td>
<td>Usual pharmacist care</td>
<td>Pharmacy data</td>
<td>1: Difference in medication adherence 8.51% (95% confidence interval, 4.63-12.4; P < .0001). Inhalation technique ↑ 2: Hospitalization rate ↓ CAT n.s.</td>
<td>High</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Study (first author, country, year)</th>
<th>n (randomized)</th>
<th>Duration of study</th>
<th>Study population</th>
<th>Setting</th>
<th>Intervention</th>
<th>Control</th>
<th>Adherence measure</th>
<th>Outcomes (1: primary outcome; 2: secondary outcomes)</th>
<th>Level of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Khdour, Northern Ireland, 2009</td>
<td>173</td>
<td>12 mo</td>
<td>Adults aged >45 y</td>
<td>Outpatient clinic at hospital</td>
<td>Clinical pharmacy-led disease and medicine (self) management program led by clinical pharmacist</td>
<td>Usual care</td>
<td>Self-reported MMAS</td>
<td>1: Hospital admission ↓, SGRQ: symptom ↓, impact ↓, physical activity n.s. 2: Adherence: intervention 77.8% vs control 60.0% (P = .019)</td>
<td>Medium</td>
</tr>
<tr>
<td>Leiva-Fernández, Spain, 2014</td>
<td>146</td>
<td>12 mo</td>
<td>No age inclusion/exclusion criteria</td>
<td>Primary care center</td>
<td>Multifactorial intervention; motivational and cognitive aspects, and skills development led by two professionals</td>
<td>Usual care</td>
<td>Dose or pill count</td>
<td>1: Adherence at baseline: intervention 40.3% vs control 41.9%; at 12 mo: intervention 48.6% vs control 32.4% (P = .046)</td>
<td>High</td>
</tr>
<tr>
<td>Song, Korea, 2014</td>
<td>46</td>
<td>2 mo</td>
<td>Adults aged 65-75 y</td>
<td>Hospital</td>
<td>Self-care support intervention using motivational interviewing by two nurse interventionists</td>
<td>Usual care</td>
<td>Self-reported through structured questionnaire</td>
<td>Self-care adherence scores of medication difference after 2 mo between groups (t = −2.946; P = .047) SGRQ scores for symptom, activity, impact and total ↓</td>
<td>Medium</td>
</tr>
<tr>
<td>Feedback on medication use</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mean sets per day (three prescribed): 1.95 ± 0.68 vs 1.63 ± 0.82 (P = .003) Mean percent adherent days 60.2% vs 40.4% (P < .0001) Mean percent total actuations taken as prescribed 88.8% vs 68.8% (P < .0001)</td>
<td>Medium</td>
</tr>
<tr>
<td>Nides, United States, 1993</td>
<td>251</td>
<td>4 mo</td>
<td>Adults, aged 35-60 y</td>
<td>University centers</td>
<td>Detailed feedback on metered-dose inhaler use patterns using electronic medication monitor (Nebulizer Chronolog)</td>
<td>No specific feedback</td>
<td>Self-reported plus canister weight or electronic tracking device</td>
<td>*All primary outcomes are described. Secondary outcomes described are quality of life, disease control, exacerbations, and inhaler technique.</td>
<td>Medium</td>
</tr>
</tbody>
</table>

*All primary outcomes are described. Secondary outcomes described are quality of life, disease control, exacerbations, and inhaler technique.†No sample size calculation was available or primary and secondary outcomes are not described.

†↓, significant improved/deteriorated. CAT, COPD Assessment Test; MAQ, Medication Adherence Questionnaire; MMAS, Morisky Medication Adherence Scale; n.s., not significant; SGRQ, Saint George’s Respiratory Questionnaire.
outcome in 12 studies. In 12 studies, there was no specified outcome. Follow-up varied from 1 to 24 months, in which 6 months was the most common.

Medication adherence was measured by self-report, validated questionnaires or scales, electronic monitoring, canister weighing, and staff ratings. Some studies had more than one medication adherence measure.

Interventions could be classified into seven categories (Figure 2): (1) reminders, (2) educational interventions, (3) multiple component intervention (eg, pharmacy care and self-management), (4) motivational strategies, (5) shared decision-making, (6) simplifying the medication regimen, and (7) feedback on medication use.

Reminders

Four studies examined the impact of reminders on medication adherence. Three studies were conducted on patients with asthma, and one was on patients with COPD and/or asthma. Charles et al evaluated the effectiveness of a metered dose inhaler with an audiovisual reminder function in asthma patients. The audiovisual reminder device, which is attached to the inhaler, has the ability to emit both audio and visual reminders at predesigned times. In total, 110 patients with asthma were randomized to either the intervention or control group for 24 weeks. The proportion of medication taken in the last 12 weeks of the study was higher in the intervention group (93%) compared with the control group (74%), with a significant difference of 18% (P < .0001). Furthermore, the proportion of patients who were taking greater than 50%, greater than 80%, or greater than 90% of the medication was significantly higher in the reminder group. The second study, by Foster et al, examined the effectiveness of daily text reminders for medication adherence. In total, 26 adult patients were randomized to an intervention period of 8 weeks. After 12 weeks, the absolute difference in mean adherence rate between groups was 17.8% (P = .019). The 6-month study of Gregoriano et al randomized 169 asthma or COPD patients to either acoustic smartphone reminders and support phone calls or usual care. The reminder was always used, whereas support phone calls were employed only when medication was used incorrectly for more than 2 consecutive days. The intervention group had significantly more days, in which 80% to 100% of patients were adherent (pressurized metered dose inhaler: 82% vs 60%, P < .001; dry powder inhaler: 90% vs 80%, P = .01) and had better timing adherence (ie, correct dosing intervals).

Education

Eleven studies evaluated the impact of education on medication adherence in asthma; one study focused on COPD. Educational interventions were frequently described, but often in insufficient detail and combined with other types of interventions (ie, multiple component intervention). Therefore, we chose to describe the effects of successful education in general rather than at the study level. Education was given by telephone calls, face-to-face sessions, written information (book, brochure, or infographic), audiotape, and video. Some studies combined these formats. Educational subjects were pathophysiology, triggers and symptoms, the role of medication, importance of adherence, side effects, and rescue medication instructions. Details regarding exact content were frequently missing. The duration of education ranged from 30 minutes to 24 months.

Multiple component intervention

Multiple component interventions were examined in 16 studies (asthma: n = 11; COPD: n = 5). There were two subtypes of multiple component interventions: (1) pharmacy care interventions, which were led by pharmacists and focus on medication (eg, education and counseling, review and correct inhaler technique including physical demonstration, motivational interviewing on drug-related problems, attitudes regarding medication and adherence, and shared decision-making); and (2) self-management interventions, which were led by different types of health care professionals educators and researchers, and focus on self-management (eg, education and counseling, review and correct inhaler technique, motivational adherence strategies) compared with usual care. The 143 patients were divided into four groups: IRF, PAD, IRF and PAD and usual care for 6 months. At 6 months, medication adherence was significantly higher in the IRF groups compared with the non-IRF groups (73% vs 43%; P < .0001). Strandbygaard et al examined the effectiveness of daily text reminders for medication adherence. In total, 26 adult patients were randomized to an intervention period of 8 weeks. After 12 weeks, the absolute difference in mean adherence rate between groups was 17.8% (P = .019). The 6-month study of Gregoriano et al randomized 169 asthma or COPD patients to either acoustic smartphone reminders and support phone calls or usual care. The reminder was always used, whereas support phone calls were employed only when medication was used incorrectly for more than 2 consecutive days. The intervention group had significantly more days, in which 80% to 100% of patients were adherent (pressurized metered dose inhaler: 82% vs 60%, P < .001; dry powder inhaler: 90% vs 80%, P = .01) and had better timing adherence (ie, correct dosing intervals).

Education

Eleven studies evaluated the impact of education on medication adherence in asthma; one study focused on COPD. Educational interventions were frequently described, but often in insufficient detail and combined with other types of interventions (ie, multiple component intervention). Therefore, we chose to describe the effects of successful education in general rather than at the study level. Education was given by telephone calls, face-to-face sessions, written information (book, brochure, or infographic), audiotape, and video. Some studies combined these formats. Educational subjects were pathophysiology, triggers and symptoms, the role of medication, importance of adherence, side effects, and rescue medication instructions. Details regarding exact content were frequently missing. The duration of education ranged from 30 minutes to 24 months.
interviewing (exercise and smoking), and self-management of stress, triggers, and attacks). These interventions consisted of multiple components, which makes it difficult to determine which component had most impact on medication adherence.

Motivational strategies

Three studies evaluated the impact of motivational strategies on medication adherence in asthma patients. Gamble et al. investigated psycho-education (based on motivational interviewing) covering self-motivation and resolving ambivalence toward taking medication. In total, 20 adults were randomized to either the intervention (eight visits in 2 weeks) or the control group (usual care). At 6 months, medication adherence improved (intervention: 37.6% to 61.9% vs control: 31.7% to 28.8%; P < .01). In the second study, 27 adults were randomized to either motivational interviewing and education or education only. The study examined the effectiveness of motivational interviewing on attitudes about medication adherence. Motivational interviewing consisted of one 30- to 60-minute session and covered an assessment of the patient’s readiness to use medication, personalized feedback about current pulmonary function, a discussion about the patient’s thoughts about received feedback, and specific intervention strategies matched to the patient’s readiness to change. One week after the intervention, the level of readiness to adhere over time was stable or increased in the intervention group and the attitude toward taking medication over time was higher. One study used a text message program (intervention group) and the attitude toward taking medication, clinical decision-making, and usual care. After 12 months, medication adherence was significantly higher in the intervention group compared with the control group, with a relative average increase in adherence of 10% (P < .001).

Shared decision-making

One study examined the effectiveness of shared and clinician decision-making on medication adherence and clinical outcomes in patients with asthma. In shared decision-making, the beliefs and preferences of the patient are considered when making a treatment decision, whereas in clinician decision-making those beliefs and preferences are not taken into account. Patients (n = 612) were randomized into three groups: shared decision-making, clinical decision-making, and usual care. After 12 months, medication adherence was significantly higher in the shared decision-making group compared with the clinical decision-making group (67% vs 59%; P = .03) and the control group (67% vs 46%, P = .0001).

Simplifying medication regimen

A study evaluated the impact of medication administration once daily instead of twice daily on medication adherence in patients with asthma. For 12 weeks, 1233 patients were randomized to receive mometasone furoate 400 µg once daily or mometasone furoate 200 µg twice daily. The mean adherence rate was significantly higher in the once-daily group compared with the twice-daily group (93.3% vs 89.5%; P < .001).

Feedback on medication use

Three studies evaluated feedback on medication use (asthma: n = 2; COPD: n = 1). Nides et al. used the Nebulizer Chronolog, a microprocessor device that records the exact date and time of each inhalation, to monitor metered-dose inhaler use electronically for 4 months in 251 COPD patients. The intervention group received detailed feedback at the end of weeks 1 and 7 to discuss inhaler use, whereas the control group did not receive feedback. After 4 months, adherence was higher in the intervention group compared with the control group (mean puffs per day: 1.95 vs 1.63; P = .003). The second study, by Onyirimba et al., randomized 30 asthma patients to the intervention group (direct clinician-to-patient feedback discussion) or the control group (usual care) for 3 weeks. Between-treatment adherence rates were comparable at week 1 but were significantly higher in the intervention group compared with the control group starting at week 2 (81% vs. 47%; P = .003). A significant group difference (favoring the intervention group) existed in adherence rates over the course of the study period of 10 weeks (P < .0001). Finally, Sulaiman et al. examined the effectiveness of feedback on inhaler technique and medication adherence. The feedback consisted of visual feedback training based on records on the electronic monitor. In total, 218 patients were randomized to the intervention (with feedback) or control group (without feedback) for a study period of 3 months. Mean adherence in the last month was significantly higher in the intervention group compared with the control group (73% vs 63%; P = .02).

Test of Adherence to Inhalers Toolkit

We integrated all effective adherence-enhancing strategies as identified in this review into a toolkit that provides recommendations for each TAI answer (Figure 3). The toolkit can guide health care professionals to effective interventions based on the main behavioral phenotype level (sporadic, deliberate, and unconscious nonadherence) and the individual question level (TAI questions 1-12) (see Table E3 in this article’s Online Repository at www.jaci-inpractice.org for a description of the development of the TAI Toolkit). The Toolkit consists of a wheel that can be used digitally or printed on paper. The wheel is accompanied by a user guide with further elaboration on the practical application of the interventions and the strength of underlying evidence (see Table E4 in this article’s Online Repository at www.jaci-inpractice.org). The first prototype of the Toolkit was assessed by a panel of eight health care professionals (physicians, nurses, and pharmacists) on usability (System Usability Scale), feasibility, and practical implications. The median System Usability Scale score was 71.4 (range, 57.5-80.0) (see Figures E2 and E3 and Table E5 in this article’s Online Repository at www.jaci-inpractice.org). Their feedback was integrated into the final version (Figure 3).

DISCUSSION

Main findings

In this review, we identified multiple medication adherence-enhancing interventions for adults with asthma and/or COPD. The studies included seven different types of interventions; the most commonly reported ones were educational and multiple component interventions. Other effective intervention types were reminders, motivational strategies, shared decision-making, simplifying the medication regimen, and feedback on medication use. The effective adherence-enhancing interventions were integrated into a practical, evidence-based toolkit.
Interpretation
We identified 40 RCTs evaluating interventions that could enhance medication adherence; of those, seven different types of interventions could be distinguished that allow further personalization of adherence management. However, their content, relationship to clinical outcomes, and methodologic quality were all variable. Power calculations and randomization methods were often not reported. Furthermore, it was difficult to compare studies because of the heterogeneity in settings and adherence measures applied. These findings regarding effectiveness and shortcomings were also identified in most previous reviews on adherence interventions in adults and children with asthma/COPD.13,60-62 Indeed, a Cochrane review also pointed out inconsistent effects on clinical outcomes of adherence-enhancing interventions.13 Potential reasons for this discrepancy may be the short follow-up of interventions (median, 6 months), the lack of selection of patients with room for clinical improvement, and the inaccurate adherence measures that were used. Especially in asthma, owing to its variable nature and the adaptation of medication use to symptom frequency, it has been difficult to show the direct relation of adherence to outcomes.15

Because we aimed to inform the Toolkit with effective interventions regarding adherence, studies that showed no improvement in medication adherence were excluded from this review. During study selection, eight studies were excluded for this reason. This is a small part of all studies in our literature search, which could be a consequence of publication bias. Another explanation could be the small number of patients included in some of these studies. Although it was difficult to compare studies directly, a general observation was that medication adherence in these RCTs was often much higher than in real-world settings.7 For example, the study by Price et al47 indicated an adherence rate of 89.5% in the control group at 12 weeks’ follow-up. This is higher than adherence rates found in many observational studies using pharmacy refills.64 Several factors could explain this, such as information bias (blinding was often not possible) and selection bias (motivated patients are willing to take part in studies). Moreover, not every patient has to be fully adherent (100%) for optimal clinical outcomes. For some patients, lower adherence may result in appropriate disease control. Further optimization of adherence is required only in case of disease deterioration.

Regarding the use of toolkits to manage adherence, we could identify no toolkit specifically designed to personalize non-adherence management in adults with asthma and/or COPD. In other fields such as diabetes, however, toolkits have been developed and studies evaluating those seem to be effective.65 Regarding the TAI specifically, most previous studies using the TAI were observational.11,66 We chose the TAI as the adherence measure tool for this study because it is the only respiratory-specific tool that identifies reasons for nonadherence, which can be linked to the three WHO-defined phenotypes. The TAI is a validated tool with a Cronbach α of 0.860 and a test-retest reliability of 0.883. Furthermore, the TAI scores correlated...
with electronically monitored adherence ($\rho = 0.293; p = .01$). The first evidence regarding the use of the TAI to guide interventions seems promising, highlighting the practical value of an evidence-based toolkit.

Strengths and limitations

This review provides an overview of all effective interventions on medication adherence in adults with asthma and COPD and summarize them into a practical, evidence-based toolkit, thus fulfilling a long-standing need as identified by the WHO. Several tools exist to identify nonadherence or reasons for nonadherence in patients with asthma or COPD, yet none of those provide advice regarding interventions a health care provider could actually apply to enhance medication adherence. To our knowledge, this is the first evidence-based toolkit that can provide tailored interventions to nonadherent patients with asthma and COPD. The Toolkit allows health care professionals to manage nonadherence in an efficient, personalized, yet protocol-based manner.

Some limitations should also be noted. Our review of effective interventions was limited to RCTs. As such, other useful interventions, not yet tested in RCTs, or not possible to test in RCTs, may have been excluded. Examples of such potentially effective interventions are caregiver support and removing financial barriers. Another limitation was the partial description of most educational and multiple component interventions. This made it difficult to describe the exact content of those interventions and which parts were effective.

Implications and recommendations

Assessment and management of medication adherence are advised in many national and international asthma and COPD guidelines. However, health care professionals generally have little time to identify nonadherence, discover the reasons for it, and provide the right interventions all in one consultation. The TAI Toolkit may help health care professionals to select the right evidence-based intervention efficiently for the right patient. The Toolkit could create more awareness about the topic of nonadherence, and could potentially be time-saving; yet optimal implementation of the TAI Toolkit in practice, including its usability, feasibility, and validity, needs to be assessed in future studies. Moreover, practical barriers, such as integration into current clinical workflows and consultations, need to be evaluated. The Toolkit is designed to be a dynamic tool that can be periodically updated when novel evidence emerges. Also, specific training and/or tools may be required to deliver each recommended intervention properly. Finally, further personalization of the TAI Toolkit will be required for populations with poorer healthy literacy, because this has been shown to be an important driver of suboptimal medication adherence. This may include the use of intuitive graphical information.

Regarding novel evidence on adherence management, we recommend future studies to employ objective and uniform adherence measures, to allow better comparison of study outcomes. Also, because little is known about the long-term effects of adherence interventions, longer follow-up is recommended.

CONCLUSION

This review provides an overview of interventions that can enhance medication adherence in adult patients with asthma and/or COPD. Effective interventions were integrated into the practical TAI Toolkit, which can help health care professionals personalize adherence management by efficiently selecting the right adherence enhancing invention for the right patient.

Acknowledgments

The authors would like to thank Sandra Been-Buck and Titia Klemmeier for their review of the conceptual version of the TAI Toolkit and all panelists for their feedback on the initial version of the TAI Toolkit.

REFERENCES

